Optical detection of a single rare-earth ion in a crystal

نویسندگان

  • R. Kolesov
  • K. Xia
  • R. Reuter
  • R. Stöhr
  • A. Zappe
  • J. Meijer
  • P.R. Hemmer
  • J. Wrachtrup
چکیده

Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr(3+) ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr(3+) ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping spin coherence of a single rare-earth ion in a crystal onto a single photon polarization state.

We report on optical detection of a single photostable Ce(3+) ion in an yttrium aluminium garnet (YAG) crystal and on its magneto-optical properties at room temperature. The spin quantum state of the emitting level of a single cerium ion in YAG can be initialized by a circularly polarized laser pulse. Coherent precession of the electron spin is read out by observing temporal behavior of circula...

متن کامل

All-Optical Preparation of Coherent Dark States of a Single Rare Earth Ion Spin in a Crystal.

All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a ...

متن کامل

Nondestructive photon detection using a single rare-earth ion coupled to a photonic cavity

We study the possibility of using single rare-earth ions coupled to a photonic cavity with high cooperativity for performing nondestructive measurements of photons, which would be useful for global quantum networks and photonic quantum computing. We calculate the achievable fidelity as a function of the parameters of the rare-earth ion and photonic cavity, which include the ion’s optical and sp...

متن کامل

Coherent properties of single rare-earth spin qubits.

Rare-earth-doped crystals are excellent hardware for quantum storage of photons. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent properties of rare-earth single-spin qubits have not been demonstrated so far. Here we present experimental results on high-fidelity optical initialization, ef...

متن کامل

Single-Ion Anisotropy, Crystal-Field Effects, Spin Reorientation Transitions, and Spin Waves in R2CuO4 (R=Nd, Pr, and Sm)

We report a detailed study of single-ion anisotropy and crystal-field effects in rare-earth cuprates R2CuO4 (R=Nd, Pr, and Sm). It is found that most of the magnetic properties are mainly due to the coupling between the copper and rare-earth magnetic subsystem which exhibits a large single-ion anisotropy. This anisotropy prefers ordering of rare-earth moments along [100] for R=Pr and Nd and alo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012